Thurgood Marshall College Fund
Teacher Quality & Retention Program
CCSS Training #2

Facilitators: Joanna Schimizzi & Hallie Hundemer-Booth
A moment of silence

Cynthia Hurd, 54, branch manager for the Charleston County Library System
Susie Jackson, 87, longtime church member
Ethel Lance, 70, employee of Emanuel AME Church for 30 years
Rev. DePayne Middleton-Doctor, 49, admissions counselor of Southern Wesleyan University
The Honorable Rev. Clementa Pinckney, 41, state senator, Reverend of Emanuel AME Church
Tywanza Sanders, 26, earned business administration degree from Allen University
Rev. Daniel Simmons Sr., 74, retired pastor (died at MUSC)
Rev. Sharonda Singleton, 45, track coach at Goose Creek High School
Myra Thompson, 59, church member
Questions from yesterday

- In your table group, brainstorm three questions that you have from yesterday (10 minutes)
 - Question Formulation Technique
 - Instructional Practice Guides
 - Learning Targets
 - Cognitive Rigor Matrix

- Choose one question that you want to ask out loud today

- Have someone else Tweet or post in Today’s meet the other two
The 5 Keys to Quality Assessment

Identify the Purpose

Clarify the Targets

Use a Sound Design

Provide Effective Feedback

Involve Students
Assessment

 Assessment for Learning

 Assessment of Learning
Shifts in Assessment

From assessing to learn what students do not know
To assessing to learn what students understand

From using results to calculate grades
To using results to inform instruction

From end-of-term assessments by teachers
To students engaged in ongoing assessment of their work and others

From judgmental feedback that may harm student motivation
To descriptive feedback that empowers and motivates students
Pre-reading Reflection

Standing meeting:

In your **CONTENT** group: Create groups of 3-4

- Divide the chart paper into 4 squares
- Write your subject on the top of the paper
- Write your single sentence (direct quote) onto the paper for each partner

In your small group discuss common themes/statements
Pre-reading Reflection

- Hang your group’s chart paper on the wall:
- Gallery walk through the other groups’ chart paper
- Note-take (in Today’s Meet) http://today.io/12z4D
 - What are the common statements you see along the way? Be ready to discuss.
Five Strategies for Formative Assessment

1. Clarifying and sharing learning targets and criteria for success

Purpose: getting the students to really understand what their classroom experience will be and how their success will be measured.

Be sure to: share with students examples of strong and weak work
Five Strategies for Formative Assessment

2. Engineering effective discussion, questions, activities, and tasks that elicit evidence of learning from multiple intelligences

Purpose: developing differentiated effective classroom instructional strategies that allow for the measurement of success.
Five Strategies for Formative Assessment

3. Providing feedback that moves students forward

 Purpose: working with students to provide them the information they need to better understand problems and solutions.

 Be sure to: Provide descriptive feedback and help students to self-assess and set goals.
Five Strategies for Formative Assessment

4. Activating students as instructional resources for one another

Purpose: Getting students involved with each other in discussions and working groups can help improve student learning.

Be sure to: design lessons to focus on one aspect of quality at a time. Teach students “focused revision”
Five Strategies for Formative Assessment

5. Activating students as owners of their own learning

Purpose: students need guidelines and opportunities to learn and engage in self-assessment.

Be sure to: Engage students in self-reflection and let them document and share their learning.
Formative Assessment

Each chart paper around the room has a statement about formative assessment:

- You are to rotate from poster to poster and **either** add a comment about that finishes the statement about formative assessment **or** builds on another teacher’s point.
- You may STAR another student’s comment as long as you make a comment to their statement.
Break
Mark each example of descriptive feedback with a D and each example of evaluative feedback with an E. If you believe it is neither, mark it with an X.

_____ Good job!

_____ Sloppy work

_____ How did you reach that conclusion? Where’s your data

_____ Proficient

_____ 😊

_____ Your calculations are accurate. Take another look at appropriate units for density.

_____ C-

_____ Excellent!

_____ You need to try harder next time. You can do it!

_____ The students at station two are ready for the lab, they have their books cleared and their safety glasses on.

_____ ★

_____ You need to label the x-axis, include units with your label, choose an appropriate scale, show the points you plotted, and give the graph a title.

_____ 81%
Descriptive vs Evaluative Feedback

• What is Descriptive Feedback? What is the purpose?

• What is Evaluative Feedback? What is the purpose?
Evaluative Feedback

Evaluative feedback sums up achievement and assigns a label. It expresses a judgment.

- Grades—A, B, C, D, F
- Letters—P for proficient, D for developing, B for beginning
- Numbers—4 for exceeds standard, 3 for meets standard, 2 for approaching standard, 1 for does not meet standard
- Words—Excellent, Good, Fair, Poor
- Other symbols—smiley faces, stars, pluses, checks, minuses, etc.
- Written comments—good work, needs work
- Stickers—Great Job! Awesome! Super!

Feedback that expresses approval or disapproval about the achievement or the student also falls into the category of evaluative feedback.

We often assign evaluative feedback to all work, even that which is for practice. Not only is this not necessary, it is in many instances counterproductive.

Descriptive Feedback

Descriptive feedback offers information about the work, product, or performance relative to the intended learning. Effective descriptive feedback has the following characteristics:

- Is value neutral—avoids praise or blame
- Focuses on the intended learning
- Shows where the work is right or wrong and why
- Pinpoints strengths and identifies areas for improvement in terms of the intended learning
- Takes into account the amount of corrective information the learner can act on at one time
- Models the kind of thinking students will engage in when they self-assess
- Can be used by students to take action to improve
- Does not cause the learner to shut down
Mark each example of descriptive feedback with a D and each example of evaluative feedback with an E. If you believe it is neither, mark it with an X.

_____ Good job!

_____ Sloppy work

_____ How did you reach that conclusion? Where's your data

_____ Proficient

_____ 😊

_____ Your calculations are accurate. Take another look at appropriate units for density.

_____ C-

_____ Excellent!

_____ You need to try harder next time. You can do it!

_____ The students at station two are ready for the lab, they have their books cleared and their safety glasses on.

_____ ★

_____ You need to label the x-axis, include units with your label, choose an appropriate scale, show the points you plotted, and give the graph a title.

_____ 81%
Mark each example of descriptive feedback with a D and each example of evaluative feedback with an E. If you believe it is neither, mark it with an X.

E Good job!

E Sloppy work

D How did you reach that conclusion? Where’s your data?

E Proficient

E 😊

D Your calculations are accurate. Take another look at appropriate units for density.

E C-

E Excellent!

E You need to try harder next time. You can do it!

D The students at station two are ready for the lab, they have their books cleared and their safety glasses on.

E ★

X You need to label the x-axis, include units with your label, choose an appropriate scale, show the points you plotted, and give the graph a title.

E or D 81%
Classroom Formative Assessment

• While watching the video please note-take on your own about the formative assessment points for both the teachers and the students
• Refer to the Formative assessment reflection for Danielson Framework /or script
• As you watch the video, please provide evidence of the teacher’s connection to the formative assessment process
• Be ready for discussion after the video process
Dylan Williams Formative Assessment as it relates to Danielson Framework

Observer Checklist: 5 Key Strategies for Effective Formative Assessment

<table>
<thead>
<tr>
<th>Teacher Actions (with References to the Danielson Framework)</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>The teacher clarifies for students the learning outcomes and criteria for success. Outcome represents high expectations for all students. The teacher encourages students to set their own goals. The teacher communicates the importance of learning. (1e, 1f, 2b, 3a, 3c, 4a)</td>
<td></td>
</tr>
<tr>
<td>The teacher engineers effective questions that elicit evidence of learning and provides feedback to move learners forward. Questions are thought-provoking and require students to use higher-order thinking skills. The teacher asks open-ended questions, inviting students to think of multiple solution paths. The teacher uses wait time strategically. Feedback to students in specific and timely. (1a, 1e, 3b, 3d)</td>
<td></td>
</tr>
<tr>
<td>The teacher utilizes cognitively engaging activities that provide students opportunities for higher-level thinking. Learning tasks have multiple correct responses and solution paths. The teacher provides a variety of appropriately challenging resources that are differentiated based on students' needs. The teacher fosters an environment in which students are actively engaged in a productive struggle. (1e, 2c, 3c)</td>
<td></td>
</tr>
<tr>
<td>The teacher uses formative assessment strategies to determine students' understanding and adjust instruction to meet students' immediate learning needs. Formative assessment is ongoing and strategic. Lesson plans indicate adjustments based on formative assessment data. The teacher accurately assesses the effectiveness of instructional activities. (1b, 1f, 3d, 3e, 4a, 4b)</td>
<td></td>
</tr>
<tr>
<td>The teacher fosters a learning environment in which students are instructional resources for each other. Instructional student groups are organized thoughtfully to maximize learning and build on student strengths. The teacher encourages students to take the initiative to ensure group work is productive. The teacher invites students to explain their thinking to the class and then respectively critique each other's reasoning. (1e, 2a, 2c, 3a, 3b, 3c)</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments:
Blogs that might help clarify

How does this fit into your classroom

• Please respond to the Today’s Meet
 • http://today.io/12z4D
• Share how this thinking of formative assessment could change your instruction/interaction
• Be ready to share out when called on.
Taking ASSESSMENT back to the standards

Which word or phrase from the IPG indicators below best represents the connection to ASSESSMENT?

pollev.com/indybio

Instructional Practice Guides

- 2D - Questions are sequenced to build knowledge by guiding students to delve deeper into the text and graphics.

- 3C - The teacher encourages reasoning and problem solving by posing challenging problems that offer opportunities for productive struggle.
 - Students persevere in solving problems in the face of initial difficulty.

Revised Bloom’s Taxonomy vs. Webb’s DOK Levels

<table>
<thead>
<tr>
<th>Revised Bloom’s Taxonomy</th>
<th>Webb’s DOK Level 1</th>
<th>Webb’s DOK Level 2</th>
<th>Webb’s DOK Level 3</th>
<th>Webb’s DOK Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember</td>
<td>Recall, observe, & recognize facts, principles, properties</td>
<td>Specify and explain relationships (e.g., non-examples/examples; cause-effect)</td>
<td>Use concepts to solve non-routine problems</td>
<td>Relate mathematical or scientific concepts to other content areas, other domains, or other concepts</td>
</tr>
<tr>
<td>Retrieve knowledge from long-term memory, recognize, recall, locate, identify</td>
<td>Recall/identify conversions among representations or numbers (e.g., customary and metric measures)</td>
<td>Make and record observations</td>
<td>Explain, generalize, or connect ideas using supporting evidence</td>
<td>Develop generalizations of the results obtained and the strategies used (from investigation or readings) and apply them to new problem situations</td>
</tr>
<tr>
<td>Understand</td>
<td>Evaluate an expression</td>
<td>Explain steps followed</td>
<td>Make and justify conjectures</td>
<td>Make and explain estimates</td>
</tr>
<tr>
<td>Construct meaning, clarify, paraphrase, represent, translate, illustrate, give examples, classify, categorize, summarize, generalize, infer a logical conclusion (such as from examples given), predict, compare/contrast, match like ideas, explain, construct models</td>
<td>Locate points on a grid or number on number line</td>
<td>Summarize results or concepts</td>
<td>Explain thinking when more than one response is possible</td>
<td>Explain phenomena in terms of concepts</td>
</tr>
<tr>
<td>Apply</td>
<td>Follow simple procedures (recipe-type directions)</td>
<td>Select a procedure according to criteria and perform it</td>
<td>Design investigation for a specific purpose or research question</td>
<td>Select or devise approach among many alternatives to solve a problem</td>
</tr>
<tr>
<td>Carry out or use a procedure in a given situation; carry out (apply) to a familiar task, or use (apply) to an unfamiliar task</td>
<td>Calculate, measure, apply a rule (e.g., rounding)</td>
<td>Solve routine problem applying multiple concepts or decision points</td>
<td>Conduct a designed investigation</td>
<td>Conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results</td>
</tr>
<tr>
<td>Analyze</td>
<td>Retrieve information from a table or graph to answer a question</td>
<td>Categorize, classify materials, data, figures based on characteristics</td>
<td>Compare information within or across data sets or texts</td>
<td>Analyze multiple sources of evidence</td>
</tr>
<tr>
<td>Break into constituent parts, determine how parts relate, differentiate between relevant-irrelevant, distinguish, focus, select, organize, outline, find coherence, deconstruct</td>
<td>Identify whether specific information is contained in graphic representations (e.g., table, graph, T-chart, diagram)</td>
<td>Organize or order data</td>
<td>Analyze and draw conclusions from data, citing evidence</td>
<td>Analyze complex/abstract themes</td>
</tr>
<tr>
<td></td>
<td>Identify a pattern/trend</td>
<td>Compare/contrast figures or data</td>
<td>Generalize a pattern</td>
<td>Gather, analyze, and evaluate information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select appropriate graph and organize & display data</td>
<td>Interpret data from complex graph</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpret data from a simple graph</td>
<td>Analyze similarities/differences between procedures or solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extend a pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate</td>
<td>Make judgments based on criteria, check, detect inconsistencies or fallacies, judge, critique</td>
<td>Cite evidence and develop a logical argument for concepts or solutions</td>
<td>Gather, analyze, & evaluate information to draw conclusions</td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>Brainstorm ideas, concepts, or perspectives related to a topic</td>
<td>Generate conjectures or hypotheses based on observations or prior knowledge and experience</td>
<td>Synthesize information across multiple sources or texts</td>
<td>Design a mathematical model to inform and solve a practical or abstract situation</td>
</tr>
<tr>
<td>Reorganize elements into new patterns/structures, generate, hypothesize, design, plan, construct, produce</td>
<td></td>
<td>Synthesize information within one data set, source, or text</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How can you use the CRM to create meaningful assessment questions?

POST-it -- write your thoughts on the Post-it

1) Compare your Post-it to a partner at another desk,
2) Tweet a picture with a caption
How can you use the CRM to create meaningful assessment questions?

- Start first with your standard
- Deconstruct and scaffold your standard to measure different levels of mastery
- Remember, wrong answers mean something!
- Use varied formats for varied learners
Examine an example

1) Find a science friend… make groups of 5 or less.

2) Identify the levels of the Cognitive Rigor Matrix for each question.

3) How would you modify this example?
Summative Assessments

FOR A FAIR SELECTION EVERYBODY HAS TO TAKE THE SAME EXAM: PLEASE CLIMB THAT TREE
Examine an example of a summative

1) APPLY: Read and discuss your assigned question with your group.
 a) Levels on the Cognitive Rigor Matrix
 b) other thoughts

2) ANALYZE: Chunk yourself into groups that have a #9, #10, #12, #13 to compare questions.
Examine an example of a summative

- EVALUATE -- How can you use the SBAC model to develop classroom assessments?

- Go to http://padlet.com/jschimizzi/SBAC_model to post your thoughts.
Takeaways

- **Tweet time**
 - Use Twitter to share out
 - one amazing thing you heard today
 - mention at least one other participant in your Tweet
 - Use the #TQRP
 - Reply to one other participant
Joanna Schimizzi
Student Achievement Partners
jschimizzi@gmail.com

Hallie Hundemer-Booth
Student Achievement Partners
halliehundemerbooth@gmail.com