Thurgood Marshall College Fund
Teacher Quality & Retention Program
CCSS Quarterly Training #1
October 28th 2014

Facilitators: Moseka Medlock & Hallie Hundemer-Booth
Overview

- ELA shifts in instruction
- unwrapping standards
- create clear learning targets
- learning target and assessment match
- critical consumer of media
K-W-L

• K- What do you know about the Common Core State Standards?

• W- What do you want to know about the Common Core State Standards?

• L- What have you learned about the Common Core State Standards?
Background of the Common Core

Initiated by the National Governors Association (NGA) and Council of Chief State School Officers (CCSSO) with the following design principles:

• Result in College and Career Readiness
• Based on solid research and practice evidence
• Fewer, clearer, and higher
How did CCSS emerge?

• State led initiative
• NGA and CCSSO collaborated
• Took best of state standards and internationally benchmarked them
• 2009 CCR Anchor Standards released
• 2010 CCSS released
• Not national standards
• Different states are at different levels of implementation.
ELA/Literacy: 3 shifts

1. Building knowledge through content-rich nonfiction

2. Reading, writing, and speaking grounded in evidence from text, both literary and informational

3. Regular practice with complex text and its academic language
“Unwrapping” standards

1- Identify key concepts by underlining important nouns or noun phrases

2- Identify skills by circling the verbs

3- Create a graphic organizer to represent the “unwrapped” concepts and skills
RI.6.2 Determine a central idea of a text and how it is conveyed through particular details; provide a summary of the text distinct from personal opinions or judgments.

W.6.1 Write arguments to support claims with clear reasons and relevant evidence.

a. Introduce claim(s) and organize the reasons and evidence clearly.

b. Support claim(s) with clear reasons and relevant evidence, using credible sources and demonstrating an understanding of the topic or text.
<table>
<thead>
<tr>
<th>Skills (verbs)</th>
<th>Concepts (Nouns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETERMINE (2, 4)</td>
<td>A central idea of a text</td>
</tr>
<tr>
<td></td>
<td>How [central idea] is conveyed through particular details</td>
</tr>
<tr>
<td>PROVIDE (2, 4)</td>
<td>Summary of the text, distinct from personal opinions or judgments</td>
</tr>
<tr>
<td>WRITE (4, 6)</td>
<td>Arguments</td>
</tr>
<tr>
<td>SUPPORT (2, 4)</td>
<td>Claims with clear reasons and relevant evidence</td>
</tr>
<tr>
<td>INTRODUCE (2,3)</td>
<td>Claims</td>
</tr>
<tr>
<td>ORGANIZE (3,5)</td>
<td>Reasons</td>
</tr>
<tr>
<td></td>
<td>Evidence</td>
</tr>
<tr>
<td>USE (3)</td>
<td>Credible sources</td>
</tr>
<tr>
<td>DEMONSTRATE (2)</td>
<td>Understanding of topic or text</td>
</tr>
</tbody>
</table>
Types of Learning Targets – Using the Cognitive Rigor Matrix to design targets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember</td>
<td>o Recall, observe, & recognize facts, principles, properties</td>
<td>o Specify and explain relationships (e.g., non-examples/examples; cause-effect)</td>
<td>o Relate mathematical or scientific concepts to other content areas, other domains, or other concepts</td>
<td>o Use concepts to solve non-routine problems; exp. generalize, or connect ideas using supporting evidence; make and justify conjectures; explain thinking when more than one response is possible; explain phenomena in terms of concepts</td>
</tr>
<tr>
<td></td>
<td>o Recall/identify conversions among representations or numbers (e.g., customary and metric measures)</td>
<td>o Make and record observations</td>
<td>o Develop generalizations of the results obtained and the strategies used (from observation or readings) and apply them to new problem situations</td>
<td>o Select or devise approach among many alternatives to solve a problem; conduct a project that requires identifying solutions, solving the problem, and reporting results</td>
</tr>
<tr>
<td>Understand</td>
<td>o Evaluate an expression</td>
<td>o Make and record observations</td>
<td>o Relate mathematical or scientific concepts to other content areas, other domains, or other concepts</td>
<td>o Design investigation for a specific purpose or research question; conduct a designed investigation; use concepts to solve non-routine problems; use & show reasoning, planning, and evidence; translate problem & symbolic notation when not a direct translation</td>
</tr>
<tr>
<td></td>
<td>o Locate points on a grid or number on number line</td>
<td>o Explain steps followed</td>
<td>o Select or devise approach among many alternatives to solve a problem; conduct a project that requires identifying solutions, solving the problem, and reporting results</td>
<td>o Select or devise approach among many alternatives to solve a problem; conduct a project that requires identifying solutions, solving the problem, and reporting results</td>
</tr>
<tr>
<td></td>
<td>o Solve a one-step problem</td>
<td>o Summarize results or concepts</td>
<td>o Use concepts to solve non-routine problems; exp. generalize, or connect ideas using supporting evidence; make and justify conjectures; explain thinking when more than one response is possible; explain phenomena in terms of concepts</td>
<td>o Select or devise approach among many alternatives to solve a problem; conduct a project that requires identifying solutions, solving the problem, and reporting results</td>
</tr>
<tr>
<td></td>
<td>o Represent math relationships in words, pictures, or symbols</td>
<td>o Make basic inferences or logical predictions from data/observations</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td></td>
<td>o Read, write, compare decimals in scientific notation</td>
<td>o Make and explain estimates</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td>Apply</td>
<td>o Follow simple procedures (recipe-type directions)</td>
<td>o Select a procedure according to criteria and perform it</td>
<td>o Use concepts to solve non-routine problems; exp. generalize, or connect ideas using supporting evidence; make and justify conjectures; explain thinking when more than one response is possible; explain phenomena in terms of concepts</td>
<td>o Use concepts to solve non-routine problems; exp. generalize, or connect ideas using supporting evidence; make and justify conjectures; explain thinking when more than one response is possible; explain phenomena in terms of concepts</td>
</tr>
<tr>
<td></td>
<td>o Calculate, measure, apply a rule (e.g., rounding)</td>
<td>o Solve routine problem applying multiple concepts or decision points</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td></td>
<td>o Apply algorithm or formula (e.g., area, perimeter)</td>
<td>o Solve routine problem applying multiple concepts or decision points</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td></td>
<td>o Solve linear equations</td>
<td>o Solve routine problem applying multiple concepts or decision points</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td></td>
<td>o Make conversions among representations or numbers, or within and between customary and metric measures</td>
<td>o Solve routine problem applying multiple concepts or decision points</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
<td>o Use models/diagrams to represent or explain mathematical concepts</td>
</tr>
<tr>
<td>Analyze</td>
<td>o Retrieve information from a table or graph to answer a question</td>
<td>o Categorize, classify materials, data, figures based on characteristics</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
</tr>
<tr>
<td></td>
<td>o Identify whether specific information is contained in graphic representations (e.g., table, graph, T-chart, diagram)</td>
<td>o Organize or order data</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
</tr>
<tr>
<td></td>
<td>o Identify a pattern/trend</td>
<td>o Compare/contrast figures or data</td>
<td>o Generalize a pattern</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
</tr>
<tr>
<td></td>
<td>o Interpret data from a simple graph</td>
<td>o Select appropriate graph and organize/display data</td>
<td>o Interpret data from complex graph</td>
<td>o Analyze multiple sources of evidence; analyze complex/abstract themes; gather, analyze, and evaluate information</td>
</tr>
<tr>
<td>Evaluate</td>
<td>o Cite evidence and develop a logical argument for concepts or solutions</td>
<td>o Analyze or evaluate information to draw conclusions</td>
<td>o Analyze or evaluate information to draw conclusions</td>
<td>o Analyze or evaluate information to draw conclusions</td>
</tr>
<tr>
<td></td>
<td>o Make judgments based on criteria, check, detect inconsistencies or fallacies, generate, hypothesize, design, plan, construct, produce</td>
<td>o Describe, compare, and contrast solution methods; verify reasonableness of results</td>
<td>o Verify reasonableness of results</td>
<td>o Verify reasonableness of results</td>
</tr>
<tr>
<td>Create</td>
<td>o Brainstorm ideas, concepts, or perspectives related to a topic</td>
<td>o Synthesize information within one data set, source, or text</td>
<td>o Synthesize information across multiple sources or texts</td>
<td>o Synthesize information across multiple sources or texts</td>
</tr>
<tr>
<td></td>
<td>o Generate conjectures or hypotheses based on observations or prior knowledge and experience</td>
<td>o Develop a scientific/mathematical model for a complex situation</td>
<td>o Design a mathematical model to inform and solve a practical or abstract situation</td>
<td>o Design a mathematical model to inform and solve a practical or abstract situation</td>
</tr>
</tbody>
</table>
Keys to Quality Classroom Assessment

Accurate Assessment

Key 1: Clear Purpose
- What's the purpose?
- Who will use the results?
- What will they use the results to do?

Key 2: Clear Targets
- What are the learning targets?
- Are they clear?
- Are they appropriate?

Key 3: Sound Design
- What method?
- Quality questions?
- Sampled how?
- Avoid bias how?

Key 4: Effective Communication
- How manage information?
- How report? To whom?

Key 5: Student Involvement
- Students are users, too.
- Students need to understand targets, too.
- Students can assess, too.
- Students can track progress and communicate, too.

Where Am I Going?

Provide students with clear and understandable vision of the learning target.

Clear Learning Target

• If the learning is unclear to you then
 – You will not be able to make it clear to students.
 – It will be unclear what to teach and how to assess.
 – It could be interpreted different ways that could lead to significantly different learning experiences.

• Create learning targets that are inherent to the intent of the standard.

• Sometimes the benchmark or standard is stated in a manner that is clear and may only need to be categorized to determine which method should be used to assess the intended learning.
Types of Learning Targets

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Reasoning</th>
<th>Performance Skills</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>What knowledge or understanding is required to become competent on this standard?</td>
<td>What reasoning (if any) is required to be competent on this standard?</td>
<td>What performance skills (if any) are required to demonstrate competence on this standard?</td>
<td>What product competencies (if any) are required by this standard?</td>
</tr>
</tbody>
</table>

Remember, not all standards have all of these as underpinnings and some standards may only need to be ‘classified’ to assist with assessing students’ learning.
Cognitive Scaffolding and Targets

- Knowledge
- Reasoning
- Performance Skills
- Products
Intent of Performance Expectation
Rules of Thumb for Deconstruction of Standards

1. Deconstruction of a standard should occur only if it makes the standard clearer—*sometimes you don’t know that until you try to deconstruct it*.

2. There are no “product” targets/standards for reading. “Product” target/standards in mathematics require students to produce a concrete tangible item; a simple sketch/drawing is not math product.

3. Phonics targets are *typically* knowledge targets. Mathematical procedures where students follow memorized rules or algorithms are knowledge targets because they only require procedural knowledge.
Rules of Thumb for Deconstruction of Standards

4. Only “performance skill” in reading involves reading aloud, where the only way you could have evidence of attainment of the standard is to LISTEN to students. Everything else in reading is either knowledge or reasoning. The only “performance skills” in mathematics include standards where you would actually have to OBSERVE students so you can SEE or HEAR them to know if they mastered the target.

5. A product target will not always have an accompanying performance skill target. Product targets sometimes produce evidence of target attainment that do not require a “direct observation” of performance. (i.e., using the writing process to complete an assigned piece of writing). Teachers do not always need to SEE or HEAR the students drafting their ideas. The finished product will provide the evidence.
Rules of Thumb for Deconstruction of Standards

6. Performance skill and product targets assure that educators do not “scantron their way through life.” The “screener” for determining whether or not a standard is a performance skill or product target is that it cannot be assessed accurately using selected response or extended response assessment items. Performance skill targets and product targets require observations, “other” assessments, or specific products (that would be beyond any typical extended written response) that focus on degrees of QUALITY, not just right or wrong.

7. Don’t belittle the knowledge category – knowledge does not equal “easy or simple.” Knowledge includes procedural knowledge--KNOWS HOW, as well as KNOWS THAT and KNOWS WHEN. (Tying your shoe begins as a skill, but becomes procedural knowledge once you have mastered it).
Rules of Thumb for Deconstruction of Standards

8. Product vs. Learning Task: Some standards may seem to imply that a “product” is called for when in fact WE impose a notion of HOW we would teach or look for mastery of the target (assess). In that case, the standard probably doesn't have an underpinning product target. Be sure when you are deconstructing standards that the FOCUS is on the learning intended— and not the instructional lesson or activity you would design.

9. “Comprehension”, just like” understands”, is a FUZZY term (i.e., different people interpret it in different ways). If you use that word in a target, it needs to be more clearly defined.

10. The ultimate reasons we categorize standards/targets include:
 a. To reflect the true cognitive demand needed
 b. To inform the best (valid and efficient) assessment method for gathering defensible evidence of student attainment
Example of the work

Performance Expectation

• K-PS2-2

How to use:

• Activity 4.2
• Activity 4.4
Activity 4.2
Target – Method Match Template

Take each LT:
Determine what type of Assessment Method would be appropriate for each.
Learning Target Match

• While using K-PS2-2 look over the learning targets created in each section and Match the Learning Target with the Target Type and what type of assessment could be used to assess that target.

• Evaluate the number of each type of assessment used.

• Note: You could check more than one assessment type.
Types of Assessments

- Selected Response
 - Multiple choice
- Extended Written Response
- Performance
- Personal Communication
 - Anecdotal notes from verbal discussion with student
Assessment – Learning Target Match

• Take the assessments given to you and match each question or activity to the correct Learning Target assessed (could possibly be more than one assessed)

• What patterns and/or concerns do you see?

• What changes would needed to be made with these activities/questions?
Assessment Creation

• Once you have examined the LT’s and determined what type of assessment method you should use look for/create the assessment questions.

• Once you have selected the questions/activities/extended response items use Activity 4.4 Audit an Assessment for Clear Learning Targets to assess what targets are assessed for each question.
YOUR TURN

1) Find the Standard or PE within your subject that you wish to work with.

2) Begin to deconstruct the standard/PE using the forms provided

3) Once the deconstruction of the standard is complete use the Learning Target Match form to check for connection and match.
Thank you for your time!
Moseka Medlock
TMCF
Common Core Success Coach
moseka.medlock@tmcfund.org

Hallie Hundemer-Booth
Student Achievement Partners
halliehundemerbooth@gmail.com